This will calculate a normalized amplitude based upon a user defined baseline - set using the args:
normalize_condition and normalize_stimulus. The baseline is calculated from the mean amplitude of
first "event" after the user-defined normalize_stimulus value.
Arguments
- df
 Data Frame or Tibble, with the following columns:
sweep
amplitude
condition
stimulus
event_index
- normalize_condition
 Character, the condition to normalize all amplitudes against, defaults to 'control'.
- normalize_stimulus
 Numeric, the stimulus to normalize against, defaults to '1'.
Examples
simple_df <-
  data.frame(
    sweep = c(1:20),
    amplitude = rep(c(100, 50), each = 10),
    condition = rep(c("control", "drug_1"), c(10, 10)),
    stimulus = 1,
    event_index = 1
  )
add_normalized_amplitude(simple_df,
  normalize_condition = "control",
  normalize_stimulus = 1
)
#>    sweep amplitude condition stimulus event_index amplitude_normalized
#> 1      1       100   control        1           1                  1.0
#> 2      2       100   control        1           1                  1.0
#> 3      3       100   control        1           1                  1.0
#> 4      4       100   control        1           1                  1.0
#> 5      5       100   control        1           1                  1.0
#> 6      6       100   control        1           1                  1.0
#> 7      7       100   control        1           1                  1.0
#> 8      8       100   control        1           1                  1.0
#> 9      9       100   control        1           1                  1.0
#> 10    10       100   control        1           1                  1.0
#> 11    11        50    drug_1        1           1                  0.5
#> 12    12        50    drug_1        1           1                  0.5
#> 13    13        50    drug_1        1           1                  0.5
#> 14    14        50    drug_1        1           1                  0.5
#> 15    15        50    drug_1        1           1                  0.5
#> 16    16        50    drug_1        1           1                  0.5
#> 17    17        50    drug_1        1           1                  0.5
#> 18    18        50    drug_1        1           1                  0.5
#> 19    19        50    drug_1        1           1                  0.5
#> 20    20        50    drug_1        1           1                  0.5